Automated Software Vulnerability Collection for
a Database with Static Information

Joao Rafael Henriques and José D’Abruzzo Pereira

University of Coimbra, Centre for Informatics and Systems of the University of
Coimbra, Department of Informatics Engineering
joaohenriques@student.dei.uc.pt, josep@dei.uc.pt

Keywords: software vulnerability, security, static code analysis, software met-
rics

Software vulnerabilities are present in most software applications that are
used on a daily basis. It is widely known that software vulnerabilities are a
problem for software applications as they are an open door to attacks [I]. When
an attack occurs, it can cause severe consequences, such as damage to the oper-
ation and cause legal and financial implications.

Fighting against this and building secure applications is a very complex job,
and, throughout the years, several techniques were created to detect these vul-
nerabilities, allowing the software development team to make possible their cor-
rection [2]. Such techniques usually rely either on static or dynamic techniques.

Static techniques do not require the source code to be run to identify software
vulnerabilities. The most used static technique is Static Code Analysis (SCA)
using Static Analysis Tools (SATs). On the other hand, dynamic techniques
require the source code to be run to identify the vulnerabilities. A widely known
dynamic technique is software penetration testing.

Although these techniques help identify the vulnerabilities, all of them suffer
from the same issue: either do not detect all the vulnerabilities (false negatives)
or report items that are not actual vulnerabilities (false positives). Consequently,
the software development teams spend some time analyzing the reported items
without knowing that all vulnerabilities have been reported.

To support the creation and improvement of vulnerability detection tech-
niques, there are vulnerability datasets available [3J4I5]. A methodology to collect
software vulnerabilities was proposed in a previous work [6]. However, it suffers
the same problem as other software vulnerability databases: their data are usu-
ally frozen and are not frequently updated with newly reported vulnerabilities.
Hence, we propose a solution that automates the vulnerability collection.

We automated the scripts previously created [6] by using Crontab. The au-
tomation will update the data about the vulnerabilities of open-source C/C++
projects, Mozilla, Kernel, Glibc, Httpd, and Xen. The process starts collecting
all the vulnerabilities from the website www.cve-details.com [7], which contains
vulnerability information about the selected projects. Then, we find the files
changed for each vulnerability fix in the repositories. This step takes a lot of
time to conclude. Using the identifier (hash) of each commit, it is possible to

Actas do décimo quarto Simpésio de Informética (INForum 2023)

find the changes that occurred and a list of files, as well as the lines that were
changed. With the lines changed, we can obtain the functions and classes that
were modified. A timeline of every file since the first commit of the repositories
is done next. This is an important and complex task because the repositories are
not linear, as they follow a tree structure. Finally, the vulnerabilities and patches
are inserted into the database, and the information is available to everyone with
access to the dataset. A summary of the collection process can be seen in Fig. [T}

Fig. 1. Pipeline to collect the vulnerabilities and static information
| ———

5. Insert in the I
DalTase

Database
6. Insert Patches in the

1. Collect

7. Find the Updated Data 4—| l

Deltas
(Missing, New, Equal,

8. Find the Reasons for the | — Updated) [2. Build Delta Files
Missing Vulnerabilties .
+ I
Find Aft I e
3 Find Affected Files Affected Files > 4.Build the Timeline of Files — Timeline
Legend: OEPIRERER Process New Process

An up-to-date dataset can support studies reflecting the most recent vulner-
abilities. Doing the collection every day and running every step every day takes
a lot of time and resources. To improve the performance and to allow the execu-
tion of the vulnerability collection daily, we designed and built an algorithm to
separate new and updated information. It is useless to search the affected files
of a vulnerability that does not have changes compared to the previous day. Be-
cause of that, all vulnerabilities collected daily are classified as i) Updated, ii)
New, iii) Equal, or iv) Miss vulnerabilities. The next steps are only executed
in the first two sets of vulnerabilities to improve the collection performance. The
scripts can now be run every day.

It was not expected that some vulnerabilities would not be reported every day
through our collection mechanism. Hence, we needed to investigate the possible
reasons for that. Results show that the product field (from CVE Details) is the
one with more changes in the vulnerabilities already present in the database.
This analysis helps us answer the following Research Question (RQ) RQ1: What
are the main changes in the software vulnerabilities of these projects between
2019 to 202272.

This field is used to relate the vulnerabilities to the projects, and if some
change occurs in that place, the algorithm can associate the vulnerability with
a different project. When this occurs, the vulnerabilities are not detected by
our scripts. So, we built a way to find if the vulnerability has new products
or was just removed. In the end, we have up-to-date information about all the

196 Sessdo: Computacao Paralela, Distribuida e de Larga Escala (Artigo)

Actas do décimo quarto Simpésio de Informética (INForum 2023)

vulnerabilities. The changes on the updated vulnerabilities are found and saved
to be used later.

These changes can happen for multiple reasons, like a new resolution, or
fix for one vulnerability, or removing the product field value that identifies the
target project. This is the answer to the RQ2: What are the main reasons that
led to changes in the vulnerabilities? Everyone can submit a vulnerability on the
website, and, with time, every vulnerability will receive updates until it is stable.
The main changes can be seen in Fig.

Fig. 2. Changes on the “Affected Products” field

Bl Doesn't have Affected Product
1401 Change Affected Product

120

100 -

80

60

Number of Removed CVEs

404

20 A

apache glibc xen mozilla kernel
Projects

To save the information, we use the database from Pereira et al. [0]. All the
vulnerabilities detected by the pipeline of scripts are stored in the database with
some information about each one. All of them are linked to the respective project
(Mozilla, Kernel, Httpd, Xen, Glibc) as well as the location where they are on the
repository. Additionally, the commit where the vulnerability is present and the
files, functions, and classes about the vulnerability are stored in the database.
The vulnerabilities have a CWE (Common Weakness Enumeration) identifier
that is used to assign to vulnerability categories, which were proposed by the
Pereira et al. [8].

The database also contains alerts from two different open-source SATs: Cp-
pCheck and Flawfinder. An alert is an item reported by an SAT that may in-
dicate the presence of an issue, such as a vulnerability. Some alerts can be false
positives. The database also stores alerts for vulnerabilities from the database.

To conclude, we present an automatic way to use the collection process of
vulnerabilities. We optimize the process to maintain the dataset updated as soon
as possible. Extracting software metrics from this data and inserting them into
the database is also possible and generate alerts and save them as well.

Future work includes the creation of a dashboard to provide information
about the vulnerabilities and the main changes they suffer daily. Additionally,

Sessdo: Computagdo Paralela, Distribuida e de Larga Escala (Artigo) 197

Actas do décimo quarto Simpésio de Informética (INForum 2023)

we should also highlight the items that are no longer a vulnerability without
removing them from the database. Finally, an updated architecture based on
containers should also be developed.

Acknowledgements

This work was partially funded by FCT grant 2020.04503.BD. This work is
partially funded by the FCT - Foundation for Science and Technology, I.P. /
MCTES through national funds (PIDDAC), within the scope of CISUC R&D
Unit - UIDB/00326/2020 or project code UIDP/00326/2020. This work has
been partially supported by the project AIDA - Adaptive, Intelligent and Dis-
tributed Assurance Platform (reference POCI-01-0247-FEDER-045907) leading
to this work is co-financed by the ERDF and COMPETE 2020 and by the
FCT under CMU Portugal. It is also partially supported by Project Agenda
Mobilizadora Sines Nexus. ref. No. 7113), supported by the Recovery and
Resilience Plan (PRR) and by the European Funds Next Generation EU, fol-
lowing Notice No. 02/C05-101/2022, Component 5 - Capitalization and Business
Innovation - Mobilizing Agendas for Business Innovation.

References

1. M. C. Sanchez, J. M. C. de Gea, J. L. Ferndndez-Alemén, J. Garceran, and A. To-
val, “Software vulnerabilities overview: A descriptive study,” Tsinghua Science and
Technology, vol. 25, no. 2, pp. 270-280, 2020.

2. B. Liu, L. Shi, Z. Cai, and M. Li, “Software Vulnerability Discovery Techniques:
A Survey,” in 2012 Fourth International Conference on Multimedia Information
Networking and Security, Nov 2012, pp. 152-156.

3. Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo, A. Morari,
and Z. Su, “D2a: A dataset built for ai-based vulnerability detection methods us-
ing differential analysis,” in 2021 IEEE/ACM 48rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), 2021, pp.
111-120.

4. J. Fan, Y. Li, S. Wang, and T. N. Nguyen, A C/C++ Code Vulnerability
Dataset with Code Changes and CVE Summaries. New York, NY, USA:
Association for Computing Machinery, 2020, p. 508-512. [Online]. Available:
https://doi.org/10.1145/3379597.3387501

5. Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“VulDeePecker: A deep learning-based system for vulnerability detection,” in
Proceedings 2018 Network and Distributed System Security Symposium. Internet
Society, 2018. [Online]. Available: https://doi.org/10.14722%2Fndss.2018.23158

6. J. D. Pereira, J. H. Antunes, and M. Vieira, “A Software Vulnerability Dataset of
Large Open Source C/C++ Projects,” in 2022 IEEE 27th Pacific Rim International
Symposium on Dependable Computing (PRDC), 2022, pp. 152-163.

7. “Cve details - the ultimate security vulnerability datasource,” https://www.
cvedetails.com/, 2023, accessed: 2023-05-11.

8. J. D’Abruzzo Pereira and M. Vieira, “On the use of open-source c/c++ static analy-
sis tools in large projects,” in 2020 16th Furopean Dependable Computing Conference
(EDCC), 2020, pp. 97-102.

198 Sess@o: Computacao Paralela, Distribuida e de Larga Escala (Artigo)

https://doi.org/10.1145/3379597.3387501
https://doi.org/10.14722%2Fndss.2018.23158
https://www.cvedetails.com/
https://www.cvedetails.com/

	Automated Software Vulnerability Collection for a Database with Static Information

